
HW1: malloctopus

Heap memory allocator library

● Ported CSAPP 32-bit implementation for 64-bit systems

● Experimented with different data structures & strategies

○ Implicit, explicit, segregated free lists

Further learning:

● google/tcmalloc: thread-caching malloc

● CSAPP 9.10: Garbage collection

https://github.com/google/tcmalloc

HW2: greptile

Multi-threaded pattern matching utility

● Traversed UNIX file hierarchy with using readdir() API

● Worker thread pool, ring buffer paradigm, synchronization

Further learning:

● greptile part 3: performance evaluation

● ripgrep design

https://blog.burntsushi.net/ripgrep/

HW3: cowchat

Chat server built with advanced I/O techniques

● Multiplexing client connections using select()

● Interprocess communication: fork, pipes, signals

● Domain sockets for connection sharing

● Shared memory & named semaphores for synchronization

Further learning:

● APUE 14.5 Asynchronous I/O

● APUE 14.6 Scatter reads, gather writes

● Linux io_uring: https://unixism.net/loti/what_is_io_uring.html

https://unixism.net/loti/what_is_io_uring.html

HW4: ladebug

Assembly-level command line debugger

● Built on top of Linux ptrace() API

● x86-64 assembly fundamentals

● Software breakpoints using x86 int3 instruction

● Function address resolution using ELF symbol table

Further learning:

● Hardware breakpoints (watchpoints)

● Source-level debugging: DWARF debug data format

HW5: seald

Linker for no-pie executables

● Parsed input relocatable ELF objects

● Performed symbol resolution and relocations across arbitrary number

of object files

Further learning:

● Handle .rodata, .data, .bss (global/static variables, string literals, etc.)

● Linking with static and shared libraries

HW6: zookeeper []

Linux container built on top of system facilities

● cgroups: Resource control

● Namespaces: Resource isolation

● Capabilities/seccomp: Kernel access control

Further learning:

● History of virtualization & virtual machines

● Experiment with Docker and Podman

What comes next

COMS 4118: Operating Systems I

● Linux kernel internals: syscalls, synchronization, memory,

scheduling, filesystems

COMS 4115: Programming Languages & Translators

● Compiling source code to intermediate code; optimizations

● Garbage collection, language runtime systems

COMS 4113: Fundamentals of Distributed Systems
● IPC, synchronization, parallelization

What comes next

COMS 4186: Malware Analysis & Reverse Engineering

● Reverse engineering malware, more x86 assembly debugging

● Windows internals & executable format (PE)

CSEE 4824: Computer Architecture

● Hardware optimizations, cache considerations

● Storage hierarchy: cache, memory, disk

Thank you!

	Slide 1: HW1: malloctopus 🐙
	Slide 2: HW2: greptile 🦎
	Slide 3: HW3: cowchat 🐄
	Slide 4: HW4: ladebug 🐞
	Slide 5: HW5: seald 🦭
	Slide 6: HW6: zookeeper [🐙🦎🐄🐞🦭]
	Slide 7: What comes next
	Slide 8: What comes next
	Slide 9: Thank you!
	Slide 10

