
The XZ Utils Backdoor
Denzel Farmer

Lecture Plan

1. Background on open source development

2. Timeline of planting the backdoor

3. How the malicious object works

4. Reverse engineering the object

5. Attribution and implications

OSD and Linux
How is Linux developed?

Fork
Release

Open Source Development

Contributors

Commits
Merge

Maintainer

v1.0

Main Repository

“given enough eyeballs, all bugs are shallow” -
Eric Raymond

What is ‘Linux’?

- Kernel manages core functionality (scheduling,
hardware IO, memory management, etc.)

- Distributions include additional software to make
OS usable

- Distro maintainers package open source
components (which they don’t maintain)

Linux KernelLinux
Kernel

Syst
emd

Package

Manager

Additional

Software Sha
re

d
Lib

ra
rie

s

Components of a Linux Distribution

The Result

XZ Utils Timeline
Backdooring an Open Source Project

Late 2000s: XZ Utils is Born

- Tool for managing new xz and lzma compression formats

- Developed (and maintained) by Lasse Collin

- Gains popularity, integrated into major distros

- After a few years, development slows

Late 2021: Jia Tan Arrives

- New contributor begins sending patches

- First commits merged by Lasse Collin (a few months later)

Mid 2022: Fake Accounts Start Complaining

“Is XZ for Java still maintained? I asked a question here a week ago and have not heard back.
When I view the git log I can see it has not updated in over a year.” - Dennis Ens

“Patches spend years on this mailing list. 5.2.0 release was 7 years ago. There is no reason to
think anything is coming soon.” - Jigar Kumar

“Progress will not happen until there is new maintainer. XZ for C has sparse commit log too.
Dennis you are better off waiting until new maintainer happens or fork yourself. Submitting
patches here has no purpose these days. The current maintainer lost interest or doesn't care to
maintain anymore. It is sad to see for a repo like this.” - Jigar Kumar

“Over 1 month and no closer to being merged. Not a surprise.” - Jigar Kumar

Mid 2022: Lasse Collin Apologizes, Mentions Jia Tan

“I haven't lost interest but my ability to care has been fairly limited mostly due to
longterm mental health issues but also due to some other things. Recently I've
worked off-list a bit with Jia Tan on XZ Utils and perhaps he will have a bigger role
in the future, we'll see.

It's also good to keep in mind that this is an unpaid hobby project.” - Lasse Collin

Mid 2022: Pressure Mounts, Push for New Maintainer

“With your current rate, I very doubt to see 5.4.0 release this year. The only progress since april
has been small changes to test code. You ignore the many patches bit rotting away on this
mailing list. Right now you choke your repo. Why wait until 5.4.0 to change maintainer? Why
delay what your repo needs?” - Jigar Kumar

“I am sorry about your mental health issues, but its important to be aware of your own limits. I get
that this is a hobby project for all contributors, but the community desires more. Why not pass on
maintainership for XZ for C so you can give XZ for Java more attention? Or pass on XZ for Java
to someone else to focus on XZ for C? Trying to maintain both means that neither are maintained
well.” - Denis Ens

“Is there any progress on this? Jia I see you have recent commits. Why can't you commit this
yourself?” - Jigar Kumar

Mid 2022: Jia Tan becomes Maintainer

“As I have hinted in earlier emails, Jia Tan may have a bigger role in the project in
the future. He has been helping a lot off-list and is practically a co-maintainer
already. :-) I know that not much has happened in the git repository yet but things
happen in small steps. In any case some change in maintainership is already in
progress at least for XZ Utils.” - Lasse Collin

- Jia Tan can now commit directly and make releases

2023: The Year of Legitimate Commits

- A number of seemingly legitimate contributions

- Also commits to use GNU indirect functions feature
- Legitimate, but required for malware

February 2024: The Malicious Payload Commit

- Adds new, binary test files (very
common)

- Malicious payload buried in
‘bad-3-corrupt_lzma2.xz’

- Heavily obfuscated ELF object
file

- Exports ‘_get_cpuid’ function

- Inactive, but now tracked by Git
repository

February 2024: The Malicious Release

- Release tarball includes new build
scripts not in repo

- Common, artifact from
autotools

- Malicious build script injects
payload when building ‘liblzma.SO’

- Supposedly auto-generated build
scripts rarely examined

- Not tracked by Git

Malicious releases files differ from Git repository

February 2024: The Build Script Injector

- Heavily obfuscated, maybe ‘overengineered’
- Injects payload into final liblzma.so in three steps:

1. Extract/decrypt payload from test binary as liblzma_la-crc64-fast.o
2. Adds liblzma_la-crc64-fast.o to linker flags
3. ‘In-flight’ modification of crc64_resolver() code to call entrypoint _get_cpuid()

Piece of malicious build script that modifies crc64_resolve() and adds liblzma_la-crc64-fast.o to link flags

March 2024: Backdoor In Place
XZ Utils Repo

Jia Tan

Test Binary with
Payload

Release
Commit

Build Machine

Run Build Script

Extract Static Link

liblzma_la-crc64-fast.o

liblzma.so

Injector Build
Script Hostv5.6.0

Vulnerable
Machines

29 March 2024: Andres Freund Discovers Backdoor

- Microsoft PostgreSQL developer
notices odd performance behavior

- On Debian testing

- Investigates, discovers backdoor

- Notifies distribution maintainers on
March 28th

- Sends to public oss-security listserv
on March 29th

29 March 2024: RedHat Assigns CVE, Cleanup Begins

The Payload
How does a malicious compression
library provide remote execution?

Big Idea: Command and Control via SSH Daemon

- Linux servers run ‘sshd’ process to listen/accept ssh connections

- sshd dynamically links liblzma.so

- Hijack sshd function that decrypts certificates

- If a special certificate appears, extract and execute commands hidden inside it

Normal sshd

Accept
Connection

Valid
Certificate?

Launch Shell

Reject

Yes

No

Hijacked sshd

Yes

Big Idea: Command and Control via SSH Daemon

- Linux servers run ‘sshd’ process to listen/accept ssh connections

- sshd dynamically links liblzma.so

- Hijack sshd function that decrypts certificates

- If a special certificate appears, extract and execute commands hidden inside it

Accept
Connection

Valid
Certificate?

Launch Shell

Reject

Magic Number?

No

Yes

Decode Command Execute Command

No

Big Idea: C2 via SSH Daemon

- Malicious object loaded into sshd address
space

- Goal is change certificate-checking behavior

- Replace call to RSA_public_decrypt with call
to evil_RSA_pdecrypt

- Two Implementation Questions:

- How to get malicious code executed?

- How to modify sshd behavior?

Stack

.data

.got

.text
check_certificate()

sshd

liblzma.so

.got

.data

Heap

.text
evil_RSA_pdecrypt()

ELF

libcrypto.so .text
RSA_public_decrypt()

rw-

rw-

r-x

Challenge 1: Modify sshd Behavior

Stack

.data

.got

.text
check_conditions()

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

.text

ELF

- For now, assume our library code gets executed

- Can we overwrite the sshd .text section? No

libcrypto.so .text
RSA_public_decrypt()

rw-

rw-

r-x

Challenge 1: Modify sshd Code

Stack

.data

.got
got[x] = &RSA_public_decrypt

.text
check_certificate()

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text

ELF

- For now, assume our library code gets executed

- Can we overwrite the sshd .text section? No

- Instead, can alter Global Offset Table

- Table of pointers to other libraries’ symbols

rw-

rw-

r-x

Challenge 1: Modify sshd Code

- For now, assume our library code gets executed

- Can we overwrite the sshd .text section? No

- Instead, can alter Global Offset Table

- Table of pointers to other libraries’ symbols

- Replace RSA_public_decrypt() GOT entry

- sshd calls RSA_public_decrypt() to decrypt certificates

- Replace with evil_RSA_pdecrypt(), which checks for
magic and if found executes commands

Stack

.data

.got
got[x] = &evil_RSA_pdecrypt

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

ELF

.text
check_certificate()

Challenge 2: Executing Malicious Code
(And how to beat RELRO)

- Shared libraries only execute when they get called

- sshd doesn’t usually call liblzma functions

- Also ‘RELRO’ security feature allows binaries to do
all resolution at startup, then mark GOT as read-only

- Solve both with “GNU Indirect Functions” feature

- Allows any shared library to get arbitrary code
executed at load-time

r--

rw-

r-x

Stack

.data

.got
got[x] = &RSA_public_decrypt

.text

sshd

liblzma.so

.got

.data

r--
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text

ELF

GNU Indirect Function Support (IFUNC)

- Allows developer to define multiple
implementations of a function

- Must define ‘resolver’ function that picks
which one to use at load time

- Might be more optimized for certain
architecture, for example

- ld-linux.so calls resolver functions at load
time, before GOTs set read-only

- Define crc64_resolve(), a resolver for lzma_crc64

- Symbol from liblzma

- Resolver contains injected malicious entrypoint

- Resolver called at startup, supposedly to resolve
liblzma symbol

- Entrypoint performs GOT overwrite before GOT
marked read-only

rw-

rw-

r-x

Stack

.data

.got
got[x] = &evil_RSA_pdecrypt

.text

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

crc64_resolve()

ELF

In crc64_resolve() IFUNC call

Challenge 2: Execute Malicious Code
(And how to beat RELRO)

- Define crc64_resolve(), a resolver for lzma_crc64

- Symbol from liblzma

- Resolver contains injected malicious entrypoint

- Resolver called at startup, supposedly to resolve
liblzma symbol

- Entrypoint performs GOT overwrite before GOT
marked read-only

r--

rw-

r-x

Stack

.data

.got
got[x] = &evil_RSA_pdecrypt

.text

sshd

liblzma.so

.got

.data

r--
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

crc64_resolve()

ELF

At sshd _start()

Challenge 2: Execute Malicious Code
(And how to beat RELRO)

Challenge 3: Resolver Called Too Early

- Liblzma symbols resolved before sshd symbols

- Crc64 resolved before RSA_public_decrypt

rw-

rw-

r-x

Stack

.data

.got
got[x] = &evil_RSA_pdecrypt

.text

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

crc64_resolve()

ELF

In crc64_resolve() IFUNC call

- Liblzma symbols resolved before sshd symbols

- Crc64 resolved before RSA_public_decrypt

- When crc64_resolve() called, if we patch sshd
GOT, changes will just be overwritten

rw-

rw-

r-x

Stack

.data

.got
got[x] = RSA_public_decrypt()

.text

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

crc64_resolve()

ELF

After RSA_public_decrypt Resolved

Challenge 3: Resolver Called Too Early

- Liblzma symbols resolved before sshd symbols

- Crc64 resolved before RSA_public_decrypt

- When crc64_resolve() called, if we patch sshd
GOT, changes will just be overwritten

- Need a way to execute setup exactly when sshd
symbols resolved

- “Runtime Dynamic Linker Audit Hooks”

- Allow us to add callback hooks
rw-

rw-

r-x

Stack

.data

.got
got[x] = RSA_public_decrypt()

.text

sshd

liblzma.so

.got

.data

rw-
rw-

r-x

Heap

libcrypto.so .text
RSA_public_decrypt()

.text
evil_RSA_pdecrypt()

crc64_resolve()

ELF

After RSA_public_decrypt Resolved

Challenge 3: Resolver Called Too Early

RTDL Audit Hooks

- Interface in linker that supports various callbacks

- Normal use involves defining a custom shared library

- ld-linux global struct ‘dl_audit’ with function pointer
callback ‘symbind64’

- Symbind64 called whenever a symbol is resolved

rw-

rw-

r-x

Stack

rw-

r-x

Heap

ld-linux.so
.text

.data
dl_audit->symbind64 = NULL

ELF

- IFUNC resolver called very early

- Overwrite data in ld-linux, add a callback to
malicious backdoor_setup()

- Linker later resolves RSA_public_decrypt

- Triggers backdoor_setup() callback, overwrite
GOT entry to point to evil_RSA_pdecrypt()

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

In crc64_resolve() IFUNC call

liblzma.so

.data
dl_audit->symbind64 = &bd_setup

loaded_sshd_elf = &sshd

ELF

Challenge 3: Resolver Called Too Early

- IFUNC resolver called very early

- Overwrite data in ld-linux, add a callback to
malicious backdoor_setup()

- Linker later resolves RSA_public_decrypt

- Triggers backdoor_setup() callback, overwrite
GOT entry to point to evil_RSA_pdecrypt()

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = &evil_RSA_pdecrypt()

In backdoor_setup() dl-audit call

liblzma.so

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

ELF

Challenge 3: Resolver Called Too Early

liblzma.so

Challenge 4: Resolving “By Hand”

- Resolver called before linker has resolve our symbols

- Make calls to other libraries will fail

- Can’t easily find sections in ld-linux, sshd, etc.

- Must resolve accesses to ld-linux and sshd ‘by-hand’

- First, traverse memory to find ld-linux

- Second, parse ld-linux to get various pointers

- Starting point: return address of IFUNC resolver

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

liblzma.so

In crc64_resolve() IFUNC call

ELF

Challenge 4: Resolving “By Hand”

- Read crc64_resolver() return address from stack

- Will point somewhere in .text section of ld-linux

- Scan byte range for (page-aligned) ELF header magic

- Parse ld-linux ELF structure

- Partially disassemble instructions in .text section

- Locate offsets of required global variables

- From ld-linux text and data, extract other information

- SSHD ELF header, environment variables, arguments, etc.

- Use to resolve future functions manually

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

liblzma.so

Scan range
Found

 Header

ELF

In crc64_resolve() IFUNC call

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

Disassem

In crc64_resolve() IFUNC call

Challenge 4: Resolving “By Hand”

- Read crc64_resolver() return address from stack

- Will point somewhere in .text section of ld-linux

- Scan byte range for (page-aligned) ELF header magic

- Parse ld-linux ELF structure

- Partially disassemble instructions in .text section

- Locate offsets of required global variables

- From ld-linux text and data, extract other information

- SSHD ELF header, environment variables, arguments, etc.

- Use to resolve future functions manually

Putting it all together

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

1. When crc64_resolve() calls backdoor entrypoint, retrieve its
return address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

In crc64_resolve() IFUNC call

Putting it all together

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

liblzma.so

Scan range
Found

 Header

ELF

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

In crc64_resolve() IFUNC call

Putting it all together

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

Disassem1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and
struct containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

In crc64_resolve() IFUNC call

Putting it all together

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = ??

ELF

ELF

In crc64_resolve() IFUNC call

liblzma.so

ELF

.data
dl_audit->symbind64 = &bd_setup

loaded_sshd_elf = &sshd

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called
and overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = &evil_RSA_pdecrypt()

ELF

ELF

In backdoor_setup() dl-audit call

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = &evil_RSA_pdecrypt()

ELF

ELF

In certificate_check() sshd call

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

Putting it all together

1. When crc64_resolve() calls backdoor entrypoint, retrieve its return
address from stack (points to ld-linux code)

2. Scan bytes around return address for ld-linux ELF header

3. Disassemble parts of ld-linux .text to find dl_audit struct and struct
containing load addresses

4. Overwrite dl_audit->symbind64 to point to backdoor_setup()

5. On RSA_public_decrypt() resolution, backdoor_setup() called and
overwrites sshd GOT entry to evil_RSA_pdecrypt()

6. On new connection, decrypt SSH certificate, check format

7. If format correct, extract command and execute with system()

Stack
crc64_resolver ret =
&some_ld_caller + n

.got

.text
check_certificate()

ld-linux.so

.data

Heap

sshd

.text
dl_main()

some_ld_caller()

.data

.text
crc64_resolve()

backdoor_setup()
evil_RSA_pdecrypt()

.got
got[pd] = &evil_RSA_pdecrypt()

ELF

ELF

In certificate_check() sshd call

liblzma.so

ELF

.data
dl_audit->symbind64 = NULL

loaded_sshd_elf = &sshd

system()

Last Step: What’s in evil_RSA_pdecrypt?

- Command stored in encrypted SSH certificate

- Only backdoor author can send valid commands

- evil_RSA_pdecrypt tries to decrypt payload

- If malformed, behaves like RSA_public_decrypt

- If properly formatted, executes null-terminated command using system()

Ed488 Encrypted
(256 Bytes) Further Encrypted

(240 Bytes)

Selector/Magic
Numbers (16B)

Command (121 Bytes)

ChaCha20 Encrypted
(240 Bytes)

decrypt
decrypt

Signature (114 Bytes)
Unk. (5B)

* might expect different format for different selector or signature bytes

Reverse Engineering
the Object File

A few key points

Reverse Engineering

- Attackers usually don’t provide source code or meaningful debug symbols

- In this case, compiled C object file (C compilation is lossy)

- Still possible to reverse engineer compiled binaries

- Use tools like IDA or Ghidra to analyze assembly

- Reverse engineering is hard, and takes a lot of work

- This backdoor still not fully understood

Key Point 1: Quiet Setup from _get_cpuid

Key Point 1: Quiet Setup from _get_cpuid

Key Point 2: Scanning Memory to Find ld-linux

Key Point 3: Extracting Global from ld-linux.so

Code from ld-linux.so targeted for disassembly

Key Point 3: Overwriting dl_audit Structure

Key Point 4: Overwriting GOT Entry

Further Features: Avoiding Detection

- Prefix trie for strings

- Anti-debugging (ex. breakpoint checks, ptrace checks, call site disassembly)

- Environment checks

- Kill switch: environment variable yolAbejyiejuvnup=Evjtgvsh5okmkAvj

- General obfuscation (e.g. indirect function calls, no obvious syscalls)

- Carefully designed–not just a one time ‘smash and grab’

- Concerned about dynamic detection (think about the number of targets)

Live Demo

Attribution

Attribution: In General

- Ultimate goal: who was behind an attack

- Nation-state, criminal organization, or individual

- Identify certain features of attacks

- Level of sophistication, degree of effort

- Apparent motivation and target selection (profit versus intelligence)

- Techniques used, technical style

- Group attacks with similar features or technical style

- Sometimes, give groups names (e.g. Mandiant UN/FIN/APT n)

- Eventually, might get attribution by government or threat tracking organization

Attribution: Who is Jia Tan?

- May never know, but probably not one person

- Likely a large organization

- Significant amount of effort over the span of years

- A number of fake accounts, with no other traces

- Code itself seems like organizational effort

- Some indications of a nation-state

- Doesn’t appear profit driven, willing to invest in multi-year operation

- Time zones and holidays might suggest Eastern European or Middle Eastern (but this is tenuous)

- Could be Russia, Iran, China, North Korea (probably not U.S.)

- Similarities with SolarWinds backdoor by Russian group “APT29”

Larger Implications

Implications for Open Source and Cybersecurity

- Usually, there is a specific mistake to point to

- Some specific, technical solutions

- Reduce dynamic linking dependencies (sshd shouldn’t link liblzma)

- “Has dynamic linking gone too far?” - anonymous ASP student

- Ensure release tarballs match repository source

- But few for the larger problem: open source supply chain attacks

Implications for OSS/Security

- Wider recognition of open source supply chain
attacks

- XZ Utils probably not the first nor the last

- Software Bill of Materials (SBOM)

- Wouldn’t have stopped this attack

- Security-aware developers, maintainers

- Problematic for critical infrastructure to depend
on anonymous hobbyists

- Track maintainer identities? Pay maintainers?

- Probably not much will change

IN RUSSIA
AGENCY

BACKDOORING
SINCE 2021

Takeaways for ASP

- Software engineers need to understand cybersecurity

- Security is often just applied systems programming

- Interested in reverse engineering? Take W4186

- Interested in security more generally? Join CuCyber

- https://cucyber.cs.columbia.edu/

https://cucyber.cs.columbia.edu/

Sources and Further Reading

- Initial oss-security email by Andres Freund
- XZ official website (now) run by Lasse Collin
- NIST CVE Page
- Timeline by Russ Cox (includes more good links)
- Build stage analysis

- The XZ Attack Shell Script by Russ Cox
- Bash-stage Obfuscation Explained by Gynvael Coldwind

- Various public reverse engineering projects
- XZRE Project
- Initial Analysis by Kaspersky
- Binary-risk-intelligence report

- Attribution
- The Mystery of ‘Jia Tan’ by Andy Greenberg and Matt Burgess
- Brian Krebs on fake accounts
- Timezone analysis by @rheaeve

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://tukaani.org/xz-backdoor/
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://research.swtch.com/xz-timeline
https://research.swtch.com/xz-script
https://gynvael.coldwind.pl/?lang=en&id=782
https://smx-smx.github.io/xzre/xzre_8h.html#a247a9d52e67096a060b99f0eb6dd4ca6
https://securelist.com/xz-backdoor-story-part-1/112354/
https://github.com/binarly-io/binary-risk-intelligence/tree/master/xz-backdoor
https://www.wired.com/story/jia-tan-xz-backdoor/
https://infosec.exchange/@briankrebs/112197305365490518
https://rheaeve.substack.com/p/xz-backdoor-times-damned-times-and

